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My journey before UCD o)

Education 2005 £ Diploma in Mechanical Engineering, National Technical
University of Athens.

2007 ~ M.Sc. with Distinction in Power System Engineering &
Economics, University of Manchester.

2012 ~+ Ph.D. in Electrical Engineering, University of Manchester.

Positions 2005 - 06 #B#Power Supply Assistant Supervisor, Turin Winter
Olympic Games, GE Energy Rentals.

2012 — 24 0¥ Senior Researcher, Institute Montefiore, Université de
Liege.

2022 — 24 = Research Associate (part-time), National Technical
University of Athens, School of Electrical Engineering.
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Electric Power Stochastic Artificial Quantum
Systems Optimisation Intelligence Computing

Development of novel techno-economic concepts, methods and tools for bulk
electric power system planning & operation.

> Risk, reliability & resilience management.

» Power system economics & electricity markets.
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Presentation Outline

1. Background & Motivation

2. Tertiary Voltage Control Use Case
3. Overview of Methods & Results

4. Lessons Learnt & Next Steps



The Electrical Power Grid
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“The largest, most complex machine ever made” [1].

» All-Ireland Transmission Grid:

~ 1.5k Buses.
~ 1.8k Lines.
— 2 System Operators (TSOs).

» ENTSO-e Transmission Grid:

~ 20k Buses.
~ 30k Lines.
~ 30 System Operators (TSOs).
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Towards a More Deeply Interconnected Future

v~ Sharing more economy and security
across national borders.

* Scale and complexity are only set to
increase.
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Power System Security is Vital

https://earthobservatory.n&sa.gov/images/154238/blackout-in-andalusia



https://earthobservatory.nasa.gov/images/154238/blackout-in-andalusia
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What are the Modern Day Challenges? ireD)
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» RES uncertainty & variability.
» Decentralisation, markets & proliferation of distributed generation.
» Extreme weather events vs an aging system infrastructure.

» Grid digitalisation introducing cyber-physical threats.
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» RES uncertainty & variability.
» Decentralisation, markets & proliferation of distributed generation.
» Extreme weather events vs an aging system infrastructure.

» Grid digitalisation introducing cyber-physical threats.

An Unprecedented Computational Workload

» Need to perform a massive number of complex simulations in a short time
frame so as to accurately assess the system security risks.

» Taking decisions to optimally manage said risks is an even more complex task.
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Al for Power System Security Management

IEEE Transactions on Power Systems, Vol. 4,

An Artificial Intelligence Framework
for on-line Transient Stability Assessment of Power Systems

o
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L. Welienkel, Th. Van Cutsem® and M. Ribbens-Pavella
Dept. of Electrical Engineering
University of Liege, Inst. Montefiore - B28
B 4000 - Litge, Belgium

» Not really a new idea (cf [2]), rather an existing idea gaining traction [3].
» Complexity explosion is the main accelerator.

» Most breakthroughs are at the academic/proof-of-concept stage.
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Transmission System Voltage Control o)
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Goal: Maintain Voltage V,, € [Vpin, Vimax] for all nodes N.
V, < Vain: load shutdown, risk of voltage instability/collapse.
Vi > Viax: safety & equipment damage risks.

while minimising active power (resistive) losses.

Main Resource: Generator Reactive Power Output
+ Shunt capacitors/inductors, static VAR compensators.

+ Transmission switching.

17/47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



DDDDDDD

SECONDARY
VOLTAGE
REG ULATION

Primary Layer: Maintains a generator
voltage setpoint, by adjusting reactive power
output.

~ a few seconds. Source: Corsi et. al [4]
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SECONDARY
VOLTAGE
REG ULATION

Secondary Layer: Maintains a pilot bus
voltage setpoint, by coordinating the reactive
power output of participating generators.

~ a few seconds/minutes.
Primary Layer: Maintains a generator

voltage setpoint, by adjusting reactive power
output.

~ a few seconds. Source: Corsi et. al [4]
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Hierarchical Control Approach — circa 1985 [4,5,6,7,8] bep

DDDDDD

SECONDARY
VOLTAGE
REG ULATION

Tertiary Layer: Maintains control area
voltages within bounds, by choosing the
setpoints.

~ a few tens of minutes.
Secondary Layer: Maintains a pilot bus

voltage setpoint, by coordinating the reactive
power output of participating generators.

~ a few seconds/minutes.

Primary Layer: Maintains a generator
voltage setpoint, by adjusting reactive power
output.

~ a few seconds. Source: Corsi et. al [4]
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Why revisit Tertiary Voltage Control (TVC)?

Subtransmission \
Customer
26kV and 69kV

Transmission Lines
765, 500, 345, 230, and 138 kV

L3

N

Substation Primary Customer
13kV and 4kV

Generaling Station

Secondary Customer
120V and 240V

Transmission
Generator Step Customer
Up Transformer 138kV or 230kV

\

v In the past: TSOs could rely on experience vs familiar issues.
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Why revisit Tertiary Voltage Control (TVC)? e
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X Today: facing uncertainty, unobservability & unfamiliar issues (overvoltage).
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Tertiary Voltage Control under Uncertainty ueh

uuuuuu

X Optimisation techniques only suit a (crude) static approximation.
X This still requires solving an XXL Mixed-Integer Non-Linear Problem.

X Over several alternative forecast scenarios for every half-hour of the next day.
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Tertiary Voltage Control under Uncertainty s
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X Optimisation techniques only suit a (crude) static approximation.
X This still requires solving an XXL Mixed-Integer Non-Linear Problem.

X Over several alternative forecast scenarios for every half-hour of the next day.

A practical alternative

© Use an Al-based decision-support tool (Al-DST) to quickly suggest suitable
control actions for any forecasted scenario.

® Check whether the suggested actions indeed render operation feasible.

©® Let operators focus only on those scenarios where the Al-DST fails.
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Design Requirement #1: Rely on (any) Simulator e

» Historical data could only be used to learn how to operate the past system.

» We are facing new behaviours of an evolving system.
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Design Requirement #2: Manage Topological Variability e

p(x)

> Real-life power grids have changing topologies.

» Components may also change IDs between different system snapshots.

26/47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



Presentation Outline

1. Background & Motivation
2. Tertiary Voltage Control Use Case
3. Overview of Methods & Results

4. Lessons Learnt & Next Steps



Stochastic Control Policy Framework s
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operating condition x StOChaSt[HC C}?‘Tml palicy control variable y cost ¢(x, y)
9

0.97 1.05
- —a samplin
neural network P g simulation 0.345

> A power grid operating condition (i.e., topology, active power generation, load,
voltage control architectures, etc.) is passed as an input x.

» A Graph Neural Network outputs a probability distribution Iy(y|x) for the
vector y of control variables.

» Values for y can thus be sampled, and passed to the cost function c(x, y)
evaluated by a physical simulation.
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Machine Learning Approach Vo)
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» We define lMy(y|x) as a multivariate Gaussian distribution whose mean
value is the output of a trainable Graph Neural Network f(x).

Mo(y|X) = N (f5(x),0°1)

REINFORCE algorithm

> At each iteration, several physical simulations with different (x, y)
combinations allow to estimate a gradient descent direction w.r.t. the
parameters ¢ of probability distribution I,(y|x).

0" cargmin E . p) [C(X,Y)].
00 yorly([x)

29/47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



Hyper-Heterogenous Multi-Graphs (H2MG) Representation [
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(a) Single-Line Diagram| (b) Standard Graph (c) H2MG
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N J

» Preserves all physical & cyber couplings (e.g., voltage control architecture)
between the power grid components.
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Graph Neural Network with NODE coupling teh
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» Local information exchange between addresses connected via a hyper-edge
modelled as a continuous dynamical system.

» Once the dynamic system reaches its final state, class-specific decoders
translate the H2ZMGNODE embeddings into meaningful quantities.
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A Public Dataset for Tertiary Voltage Control?
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A Public Dataset for Tertiary Voltage Control? en

BUBLIN

Condenser

Nordic-32 test case variants
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A Public Dataset for Tertiary Voltage Control?

Condenser

Nordic-32 test case variants
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source operating condition

[ Sample topology J

[ Sample total load |

[ Sample individual active loads |

‘ Sample individual reactive loads ‘

[ Sample individual active generation |

\ Sample individual voltage set points \

[ Run AC Power Flow |

nu

yes

yes

new operating condition
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Benchmarking vs an AC-OPF
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Benchmarking vs an AC-OPF
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Ongoing tests on the French system (Rte)

>
>

South-West part of France
About 1200 buses, 1600 branches

Dataset of 15000 day-ahead
planning snapshots collected over 2
years

Topology dependent continuous and
discrete control variables:

» up to 70 Shunts (on/off)

> up to 70 Transfo set-points
(discrete)

» up to 7 Secondary Voltage Control
set-points (continuous)

Use of cloud computing and RTE
in-house physics simulator

First results are very promising
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Topology-Aware Reinforcement Learning for Tertiary Voltage Control,

Donon, B.; Cubélier, F.; Karangelos, E. et al., Electric Power Systems
Research 234, 2024.

Towards a Real-life Application of Al for the French Transmission

System, Donon, B.; Karangelos, E. and Wehenkel L, Pylons CIGRE
Greece 6, 2024.

®

®

®

O]

GNN Implementation Data Generator Nordic32 Variants ACOPF Benchmark
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https://orbi.uliege.be/handle/2268/315490
https://cigre.gr/wp-content/uploads/2024/12/Pylons-Issue-6.pdf
https://cigre.gr/wp-content/uploads/2024/12/Pylons-Issue-6.pdf
https://github.com/bdonon/PSCC2024
https://github.com/bdonon/powerdata-gen/tree/PSCC24
https://github.com/bdonon/updating_case60nordic/tree/PSCC24
https://github.com/montefiore-ms/ACOPF4TVC
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What Were the Main Challenges? ueh

uuuuuu

lll-defined real problems still require solutions
» No universally acceptable formulation of the TVC Problem.

» TSOs are much better at practically solving than rigorously describing the TVC
problem.

» No academic benchmark featuring realistic topological variability and a defined
hierarchical voltage control structure.

Real problems with messy data still require solutions

» Historical operation snapshots contain load-flow solutions (i.e., the effect of
TVC) rather than TVC decisions.

» Transmission system components are frequently reordered/renamed.
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Why Could this Approach Work? ben

Rich Data Model

v" The H2MG framework allows to encode all all the physically relevant features
for the problem under consideration.

Sampling-based Simulation Backbone

v Learning based on a sample of physically meaningful operating conditions,
representative of the life of the system in terms of exogenous and endogenous

sources of variability.

v Learning and validation based on the use of already existing simulators
faithfully modelling the physical phenomena for the problem of concern.

v Free of any ‘smoothness’ assumptions (not explained in this talk) and therefore
applicable to discrete and continuous controls and non-differentiable physics
simulators.
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What Happens Next? ueh
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