
Towards a Real-Life Artificial Intelligence Application for
Electricity Transmission System

Tertiary Voltage Control

Dr. Efthymios Karangelos
Asst. Prof. in Electrical Power Systems

16 May 2025

School of Electrical & Electronic Engineering
Scoil na hInnealtóireachta Leictrí agus Leictreonací
UCD



How to pronounce my name?

Ef-thy-mi-os

Cheff Think Mini Boss

2 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



How to pronounce my name?

Ef

-thy-mi-os

Cheff

Think Mini Boss

3 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



How to pronounce my name?

Ef-thy

-mi-os

Cheff Think

Mini Boss

4 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



How to pronounce my name?

Ef-thy-mi

-os

Cheff Think Mini

Boss

5 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



How to pronounce my name?

Ef-thy-mi-os

Cheff Think Mini Boss

6 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



My journey before UCD

Education 2005 Diploma in Mechanical Engineering, National Technical
University of Athens.

2007 M.Sc. with Distinction in Power System Engineering &
Economics, University of Manchester.

2012 Ph.D. in Electrical Engineering, University of Manchester.

Positions 2005 – 06 Power Supply Assistant Supervisor, Turin Winter
Olympic Games, GE Energy Rentals.

2012 – 24 Senior Researcher, Institute Montefiore, Université de
Liège.

2022 – 24 Research Associate (part-time), National Technical
University of Athens, School of Electrical Engineering.
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Research Agenda

Electric Power
Systems

Stochastic
Optimisation

Artificial
Intelligence

Quantum
Computing

Development of novel techno-economic concepts, methods and tools for bulk
electric power system planning & operation.

▶ Risk, reliability & resilience management.

▶ Power system economics & electricity markets.

8 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



Presentation Outline

1. Background & Motivation

2. Tertiary Voltage Control Use Case

3. Overview of Methods & Results

4. Lessons Learnt & Next Steps



The Electrical Power Grid
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Transmission
System Map

400, 275, 220 & 110 kV Transmission System 2024

400 kV Station

275 kV Station

220 kV Station

110 kV Station

400 kV Overhead Line
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110 kV Overhead Line

220 kV Underground Cable

110 kV Underground Cable

HVDC Cable
Transmission Connected Generation:

Thermal

Wind

Hydro

Pumped Storage

Solar

Wind/Solar

/ “The largest, most complex machine ever made” [1].

▶ All-Ireland Transmission Grid:

∼ 1.5k Buses.
∼ 1.8k Lines.
– 2 System Operators (TSOs).

▶ ENTSO-e Transmission Grid:

∼ 20k Buses.
∼ 30k Lines.
∼ 30 System Operators (TSOs).
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Towards a More Deeply Interconnected Future

✓ Sharing more economy and security
across national borders.

⋆ Scale and complexity are only set to
increase.
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Power System Security is Vital
https://earthobservatory.nasa.gov/images/154238/blackout-in-andalusia

https://earthobservatory.nasa.gov/images/154238/blackout-in-andalusia


What are the Modern Day Challenges?

▶ RES uncertainty & variability.

▶ Decentralisation, markets & proliferation of distributed generation.

▶ Extreme weather events vs an aging system infrastructure.

▶ Grid digitalisation introducing cyber-physical threats.

An Unprecedented Computational Workload
▶ Need to perform a massive number of complex simulations in a short time

frame so as to accurately assess the system security risks.

▶ Taking decisions to optimally manage said risks is an even more complex task.
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AI for Power System Security Management

▶ Not really a new idea (cf [2]), rather an existing idea gaining traction [3].

▶ Complexity explosion is the main accelerator.

▶ Most breakthroughs are at the academic/proof-of-concept stage.
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Transmission System Voltage Control

Goal: Maintain Voltage Vn ∈ [Vmin,Vmax ] for all nodes N.

Vn < Vmin: load shutdown, risk of voltage instability/collapse.

Vn > Vmax: safety & equipment damage risks.

while minimising active power (resistive) losses.

Main Resource: Generator Reactive Power Output

+ Shunt capacitors/inductors, static VAR compensators.

+ Transmission switching.
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Hierarchical Control Approach – circa 1985 [4,5,6,7,8]

Tertiary Layer: Maintains control area
voltages within bounds, by choosing the
setpoints.

∼ a few tens of minutes.

Secondary Layer: Maintains a pilot bus
voltage setpoint, by coordinating the reactive
power output of participating generators.

∼ a few seconds/minutes.

Primary Layer: Maintains a generator
voltage setpoint, by adjusting reactive power
output.

∼ a few seconds. Source: Corsi et. al [4]
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Why revisit Tertiary Voltage Control (TVC)?

✓ In the past: TSOs could rely on experience vs familiar issues.
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Why revisit Tertiary Voltage Control (TVC)?

X Today: facing uncertainty, unobservability & unfamiliar issues (overvoltage).
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Tertiary Voltage Control under Uncertainty

X Optimisation techniques only suit a (crude) static approximation.

X This still requires solving an XXL Mixed-Integer Non-Linear Problem.

X Over several alternative forecast scenarios for every half-hour of the next day.

A practical alternative
1 Use an AI-based decision-support tool (AI-DST) to quickly suggest suitable

control actions for any forecasted scenario.

2 Check whether the suggested actions indeed render operation feasible.

3 Let operators focus only on those scenarios where the AI-DST fails.
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Design Requirement #1: Rely on (any) Simulator

▶ Historical data could only be used to learn how to operate the past system.

▶ We are facing new behaviours of an evolving system.
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Design Requirement #2: Manage Topological Variability

p(x)

▶ Real-life power grids have changing topologies.

▶ Components may also change IDs between different system snapshots.
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Stochastic Control Policy Framework

0.345
neural network

operating condition x Stochastic control policy
Πθ(y |x)

control variable y cost c(x , y)
1.050.97

sampling simulation

▶ A power grid operating condition (i.e., topology, active power generation, load,
voltage control architectures, etc.) is passed as an input x .

▶ A Graph Neural Network outputs a probability distribution Πθ(y |x) for the
vector y of control variables.

▶ Values for y can thus be sampled, and passed to the cost function c(x , y)
evaluated by a physical simulation.
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Machine Learning Approach

▶ We define Πθ(y |x) as a multivariate Gaussian distribution whose mean
value is the output of a trainable Graph Neural Network fθ(x).

Πθ(y |x) = N
(
fθ(x), σ21

)
REINFORCE algorithm
▶ At each iteration, several physical simulations with different (x , y)

combinations allow to estimate a gradient descent direction w.r.t. the
parameters θ of probability distribution Πθ(y |x).

θ∗ ∈ argmin
θ∈Θ

E x∼p(·)
y∼Πθ(·|x)

[c(x , y)] .
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Hyper-Heterogenous Multi-Graphs (H2MG) Representation

(c) H2MG(b) Standard Graph(a) Single-Line Diagram

bus gen

load line
transfo.

address
node
edge

bus gen

load line
transfo.

▶ Preserves all physical & cyber couplings (e.g., voltage control architecture)
between the power grid components.
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Graph Neural Network with NODE coupling

τ = 0

ha(1) =
∫ 1
τ=0 ν

(∑
(c,e,o)∈Nx (a)Φ

c,o
θ (x̃c

e ,he(τ), τ)
)

dτ

1

3

2

2

[
1.04

]

[
0.98

]
µc

e = Ψc
θ (x̃

c
e ,he(1))

DecodingEncoding Interaction

1

3

2
1

3

τ = 1τ = 0.5

1
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e = Ξc

θ (x
c
e ) 0.9
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−0.7
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0.2
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

3
2

▶ Local information exchange between addresses connected via a hyper-edge
modelled as a continuous dynamical system.

▶ Once the dynamic system reaches its final state, class-specific decoders
translate the H2MGNODE embeddings into meaningful quantities.
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A Public Dataset for Tertiary Voltage Control?

Nordic-32 test case variants

Sample topology

Sample total load

Sample individual active loads

Sample individual reactive loads

Sample individual active generation

Sample individual voltage set points

Run AC Power Flow

source operating condition

Converged ?

Valid ?

new operating condition

yes

yes

no

no
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Benchmarking vs an AC-OPF

Table: Operating conditions w/ violation.

Standard Condenser Reduced
test set test set test set

Start 58% 58% 59%
ACOPF baseline 0.98% 0.82% 1.0%
GNN trained on Standard 5.2% 5.8% 18%
GNN trained on Condenser 5.4% 5.1% 46%
GNN trained on Reduced 35% 34% 4.6%
GNN trained on All 4.5% 4.5% 4.7%

35 / 47 | UCD SEEE - 16/05/2025 | Dr. E. Karangelos (UCD SEEE)



Benchmarking vs an AC-OPF

Table: Operating conditions w/ violation – 5% tolerance.

Standard Condenser Reduced
test set test set test set

Start 44% 44% 46%
ACOPF baseline 0.52% 0.49% 0.45%
GNN trained on Standard 1.6% 1.5% 6.0%
GNN trained on Condenser 1.9% 1.4% 20%
GNN trained on Reduced 21% 20% 1.5%
GNN trained on All 1.5% 1.3% 1.5%
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Ongoing tests on the French system (Rte)
▶ South-West part of France
▶ About 1200 buses, 1600 branches
▶ Dataset of 15000 day-ahead

planning snapshots collected over 2
years

▶ Topology dependent continuous and
discrete control variables:
▶ up to 70 Shunts (on/off)
▶ up to 70 Transfo set-points

(discrete)
▶ up to 7 Secondary Voltage Control

set-points (continuous)
▶ Use of cloud computing and RTE

in-house physics simulator
▶ First results are very promising
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Publications & Coding Resources

Topology-Aware Reinforcement Learning for Tertiary Voltage Control,
Donon, B.; Cubélier, F.; Karangelos, E. et al., Electric Power Systems
Research 234, 2024.

Towards a Real-life Application of AI for the French Transmission
System, Donon, B.; Karangelos, E. and Wehenkel L, Pylons CIGRE
Greece 6, 2024.

GNN Implementation Data Generator Nordic32 Variants ACOPF Benchmark
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https://orbi.uliege.be/handle/2268/315490
https://cigre.gr/wp-content/uploads/2024/12/Pylons-Issue-6.pdf
https://cigre.gr/wp-content/uploads/2024/12/Pylons-Issue-6.pdf
https://github.com/bdonon/PSCC2024
https://github.com/bdonon/powerdata-gen/tree/PSCC24
https://github.com/bdonon/updating_case60nordic/tree/PSCC24
https://github.com/montefiore-ms/ACOPF4TVC
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What Were the Main Challenges?

Ill-defined real problems still require solutions
▶ No universally acceptable formulation of the TVC Problem.

▶ TSOs are much better at practically solving than rigorously describing the TVC
problem.

▶ No academic benchmark featuring realistic topological variability and a defined
hierarchical voltage control structure.

Real problems with messy data still require solutions
▶ Historical operation snapshots contain load-flow solutions (i.e., the effect of

TVC) rather than TVC decisions.

▶ Transmission system components are frequently reordered/renamed.
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Why Could this Approach Work?

Rich Data Model
✓ The H2MG framework allows to encode all all the physically relevant features

for the problem under consideration.

Sampling-based Simulation Backbone
✓ Learning based on a sample of physically meaningful operating conditions,

representative of the life of the system in terms of exogenous and endogenous
sources of variability.

✓ Learning and validation based on the use of already existing simulators
faithfully modelling the physical phenomena for the problem of concern.

✓ Free of any ‘smoothness’ assumptions (not explained in this talk) and therefore
applicable to discrete and continuous controls and non-differentiable physics
simulators.
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What Happens Next?
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